Affiliation:
1. Binghamton University-SUNY, Binghamton, NY
2. IBM Corporation, Poughkeepsie, NY
Abstract
Data centers consume a considerable amount of energy which is estimated to be about 2 percent of the total electrical energy consumed in the US, and their power consumption continues to increase every year. It is also estimated that roughly 30–40 percent of the total energy used in a data center is due to the thermal management systems. So, there is a strong need for better cooling methods which could improve the cooling capacity and also reduce energy consumption for high density data centers. In this regard, liquid cooling systems have been utilized to deal with demanding cooling and energy efficiency requirements in high density data centers. In this paper, a hybrid cooling system in data centers is investigated. In addition to traditional raised floor, cold aisle-hot aisle configuration, a liquid-air hybrid cooling system consisting of rear door heat exchangers attached to the back of racks is considered. The room is analyzed numerically using two CFD based simulation approaches for modeling rear door heat exchangers that are introduced in this study. The presented model is used in the second section of the paper to compare the hybrid cooling system with traditional air cooling systems. Several case studies are taken into account including the power increases in the racks and CRAC unit failure scenarios. A comparison is made between the hybrid cooling room and a purely air cooled room based on the rack inlet temperatures. Also in this study, total energy consumption by the cooling equipment in both air-cooled and hybrid data centers are modeled and compared with each other for different scenarios. The results show that under some circumstances the hybrid cooling could be an alternative to meet the ASHRAE recommended inlet air temperatures, while at the same time it reduces the cooling energy consumption in high density data centers.
Publisher
American Society of Mechanical Engineers
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献