Dynamics of Droplet Motion Under Electrowetting Actuation

Author:

Annapragada S. Ravi1,Dash Susmita1,Garimella Suresh V.1,Murthy Jayathi Y.1

Affiliation:

1. Purdue University, West Lafayette, IN

Abstract

The static shape of droplets under electrowetting actuation is well-understood. The steady-state shape of the droplet is obtained based on the balance of surface tension and electrowetting forces, and the change in apparent contact angle is well-characterized by the Young-Lippmann equation. However, the transient droplet shape behavior when a voltage is suddenly applied across a droplet has received less attention. Additional dynamic frictional forces are at play during this transient process. We present a model to predict this transient behavior of the droplet shape under electrowetting actuation. The droplet shape is modeled using the volume of fluid method. The electrowetting and dynamic frictional forces are included as an effective dynamic contact angle through a force balance at the contact line. The model is used to predict the transient behavior of water droplets on smooth hydrophobic surfaces under electrowetting actuation. The predictions of transient behavior of droplet shape and contact radius are in excellent agreement our experimental measurements. The internal fluid motion is explained and the droplet motion is shown to initiate from the contact line. An approximate mathematical model is also developed to understand the physics of the droplet motion and to describe the overall droplet motion and the contact line velocities.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rapid scalable fabrication of stable copper electrowetting valves;Microfluidics and Nanofluidics;2023-08-17

2. A Wettability-Mediated Microdroplet Under Electrowetting Effect for Hotspot Cooling;IEEE Transactions on Components, Packaging and Manufacturing Technology;2022-02

3. Electrically modulated droplet impingement onto hydrophilic and (super)hydrophobic solid surfaces;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2020-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3