Inductive Coupled Plasma Etching of High Aspect Ratio Silicon Carbide Microchannels for Localized Cooling

Author:

Dowling Karen M.1,Suria Ateeq J.1,Won Yoonjin1,Shankar Ashwin1,Lee Hyoungsoon1,Asheghi Mehdi1,Goodson Kenneth E.1,Senesky Debbie G.1

Affiliation:

1. Stanford University, Stanford, CA

Abstract

High aspect ratio microchannels using high thermal conductivity materials such as silicon carbide (SiC) have recently been explored to locally cool micro-scale power electronics that are prone to on-chip hot spot generation. Analytical and finite element modeling shows that SiC-based microchannels used for localized cooling should have high aspect ratio features (above 8:1) to obtain heat transfer coefficients (300 to 600 kW/m2·K) required to obtain gallium nitride (GaN) device channel temperatures below 100°C. This work presents experimental results of microfabricating high aspect ratio microchannels in a 4H-SiC substrate using inductively coupled plasma (ICP) etching. Depths of 90 μm and 80 μm were achieved with a 5:1 and 12:1 aspect ratio, respectively. This microfabrication process will enable the integration of microchannels (backside features) with high-power density devices such as GaN-on-SiC based electronics, as well as other SiC-based microfluidic applications.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat transfer augmentation in microchannel heat sink using secondary flows: A review;International Journal of Heat and Mass Transfer;2022-09

2. Thermal management of GaN HEMT devices using serpentine minichannel heat sinks;Applied Thermal Engineering;2018-07

3. Deep reactive ion etching of 4H-SiC via cyclic SF6/O2 segments;Journal of Micromechanics and Microengineering;2017-08-02

4. Dry Etching of High Aspect Ratio 4H-SiC Microstructures;ECS Journal of Solid State Science and Technology;2017

5. Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices;Journal of Electronic Packaging;2016-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3