A New Shear Deformation Theory in Axiomatic Framework for Bending and Buckling Analysis of Cross-Ply and Angle-Ply Laminated Composite Plates

Author:

Dhuria Mohit1,Grover Neeraj2,Goyal Kavita1

Affiliation:

1. School of Mathematics, Thapar Institute of Engineering and Technology , Patiala 147004 , India

2. Thapar Institute of Engineering and Technology Department of Mechanical Engineering, , Patiala 147004 , India

Abstract

Abstract In this study, a new higher order hyperbolic shear deformation theory for mechanical analysis of cross-ply and angle-ply multilayered plates is developed. Analytical solution to the static and buckling responses of symmetric and anti-symmetric composite laminates is presented. The proposed theory considers secant hyperbolic function of thickness coordinate in the displacement field. Also the developed theory assumes non-linear distribution of displacements and ensures that the top and lower surfaces of the plates have zero shear stresses. The equilibrium equations are obtained by applying the principle of virtual work. The stiffness characteristics of cross-ply and angle-ply laminates are taken into account when solving these governing equations. The closed-form Navier solution satisfying the corresponding boundary conditions is derived for simply supported (SS) composite plates. The results for non-dimensional deflections, and stresses of composite laminates under the effect of sinusoidal and uniform distributed load are thus obtained. The uni-axial and bi-axial loading force are used to evaluate critical buckling loads. Furthermore, the impact of span thickness ratio, aspect ratios, fiber orientation, modulus ratio, etc. on static and buckling analysis plates is also studied. The validity of present formulation is demonstrated by comparing our results with some of the available results in the literature.

Funder

Council of Scientific and Industrial Research

Department of Science and Technology, Ministry of Science and Technology

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3