Affiliation:
1. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio
2. Department of Aeronautics, Astronautics, and Engineering Sciences, Purdue University, Lafayette, Ind.
Abstract
In this paper, we examine the response of an incompressible elastomer when it is subjected to small, steady-state oscillations superposed on a large steady deformation. The material is assumed to be isotropic in its undeformed state, and its viscoelastic behavior is characterized by means of two different approximate theories: (a) Lianis’ approximation of the theory of finite linear viscoelasticity, and (b) Bernstein, Kearsley, Zapas’ elastic fluid theory, Signorini approximation. Theoretical expressions are developed for the uniaxial stress in a body subjected to steady-state sinusoidal oscillations superposed on a state of steady, finite, uniaxial extension, using both theories. A complex modulus is defined, which reduces to the complex modulus of infinitesimal viscoelasticity when the finite strain is zero. Experiments were performed on three different polymers and the observed response is compared with that predicted by both theories.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献