Heat Transfer Through a Pressure-Driven Three-Dimensional Boundary Layer

Author:

Abrahamson S. D.1,Eaton J. K.2

Affiliation:

1. Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455

2. Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305

Abstract

An experimental investigation of heat transfer through a three-dimensional boundary layer has been performed. An initially two-dimensional boundary layer was made three dimensional by a transverse pressure gradient caused by a wedge obstruction, which turned the boundary layer within the plane of the main flow. Two cases, with similar streamwise pressure gradients and different lateral gradients, were studied so that the effect of the lateral gradient on heat transfer could be deduced. The velocity flowfield agreed with previous hydrodynamic investigations of this flow. The outer parts of the mean velocity profiles were shown to agree with the Squire-Winter theorem for rapidly turned flows. Heat transfer data were collected using a constant heat flux surface with embedded thermocouples for measuring surface temperatures. Mean fluid temperatures were obtained using a thermocouple probe. The temperature profiles, when plotted in outer scalings, showed logarithmic behavior consistent with two-dimensional flows. An integral analysis of the boundary layer equations was used to obtain a vector formulation for the enthalpy thickness, HH≜∫0∞ρuisdyρ∞ii,o(u∞2+w∞2)1/2,0,∫0∞ρwisdyρ∞is,o(u∞2+w∞2)1/2 (where is is the stagnation enthalpy), which is consistent with the scalar formulation used for two-dimensional flows. Using the vector formulation, the heat transfer data agreed with standard two-dimensional correlations of the Stanton number and enthalpy thickness Reynolds number. It was concluded that although the heat transfer coefficient decreased faster than its two-dimensional counterpart, it was similar to the two-dimensional case. The vector form of the enthalpy thickness captured the rotation of the mean thermal energy flux away from the free-stream direction. Boundary layer three dimensionality increased with the strength of the transverse pressure gradient and the heat transfer coefficients were smaller for the stronger transverse gradient.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3