Effects of Bypass Ratio Change Trend on Performance in a Military Aircraft Turbofan Engine With Comparative Assessment

Author:

Akdeniz Halil Yalcin1,Balli Ozgur23

Affiliation:

1. Department of Eskisehir Vocational School, Eskisehir Osmangazi University, Eskisehir 26040, Turkey

2. First Air Maintenance Factory, Directorate (1.HBFM), General Directorate of Military Factories (AFGM), Ministry of National Defence (MND), Eskisehir 26020, Turkey;

3. Aviation Science and Technology, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Batı Meselik Campus, Eskisehir 26020, Turkey

Abstract

Abstract In this study, it is aimed to observe the bypass effects on energetic and exergetic performance in a JT3D-3B Military Aircraft Turbofan Engine and its components. For this aim, the comprehensive energy and exergy analyses are performed separately at the various bypass ratios: BPR: 1.30 (Case A), BPR: 1.34 (Case B), BPR: 1.38 (Case C), BPR: 1.40 (Case D), BPR: 1.42 (Case E), BPR: 1.45 (Case F), and BPR: 1.36 (original design). As per the performance results, while the energetic efficiency of the engine is found to be 27.93% for Case F, 27.85% for Case E, 27.72% for Case D, 27.60% for Case C, 27.17% for Case B, 26.97% for Case A, the exergetic efficiency of the engine is found to be 26.23% for Case F, 26.23% for Case E, 26.11% for Case D, 26.00% for Case C, 25.59% for Case B, and 25.39% for Case A, Furthermore, with the increase of bypass ratio step by step from 1.30 to 1.45, while the energetic efficiency, the exergetic efficiency, the relative exergy consumption value tends to increase, the fuel exergy waste ratio value, the productivity lack ratio, and exergetic improvement potential value of the overall engine tends to decrease. This study can be helpful for turbofan engine users, owners, and designers.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference48 articles.

1. Challenges of Future Aircraft Propulsion: A Review of Distributed Propulsion Technology and Its Potential Application for the All Electric Commercial Aircraft;Gohardani;Prog. Aerosp. Sci.,2011

2. Fuel Efficiency of Commercial Aircraft: An Overview of Historical and Future Trends;Peeters,2005

3. First Law Approach of a Low Bypass Turbofan Engine;Turan;J. Autom. Control Eng.,2014

4. Exergy Analysis of Heat Recovery Steam Generator: Effects of Supplementary Firing and Desuperheater;Param;ASME J. Energy Resour. Technol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3