Affiliation:
1. Institute of Materials Physics, University of Vienna, A-1090 Wien, Strudlhofgasse 4, Austria
2. Department of General Physics, Eo¨tvo¨s University Budapest, H-1518 Budapest, Pazmany Peter Setany 1/A, Hungary
3. Sincrotrone ELETTRA, I-34012 Trieste, Basovizza, Italy
Abstract
Dislocation densities, arrangements and long range internal stresses in cold rolled polycrystalline Cu, Ni, and Al, as well as in cold torsioned Fe, were determined by X-ray diffraction profile analysis using synchrotron radiation. At different deformation degrees, scanning measurements across single grains with a focal spot of less than 50 μm were carried out, in order to inform on the features of the deformation induced substructure. At small deformations including stage III, the dislocation densities and internal stresses are uniform within single grains while at higher deformations in stages IV and V, the dislocation densities and long range internal stresses exhibit opposite fluctuations. In stage IV these fluctuations correspond to the formation of polarized tilt walls (PTW’s) from polarized dipole walls (PDW’s). In contrast to the PDW’s, the PTW’s cause a much higher misorientation in between adjacent lattice areas. This transformation, which is the main element of the progressing fragmentation process during large strain deformation, occurs in all metals studied regardless of dislocation mobility and/or lattice type. Approaching higher strains in stage V, however, these parameters gain some importance especially when the deformation occurs in an iterative way. If the mobility is high, marked static recovery takes place between the single deformation passes, which results in decreases of both dislocation density and local internal stress, and no formation of PTW’s is observed.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献