Generation of High-Intensity Focused Ultrasound by Carbon Nanotube Opto-Acoustic Lens

Author:

Tong L. H.12,Lim C. W.345,Li Y. C.6

Affiliation:

1. Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China;

2. USTC-CityU Joint Advanced Research Centre, Suzhou, Jiangsu 215123, China

3. Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China;

4. City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China;

5. USTC-CityU Joint Advanced Research Centre, Suzhou, Jiangsu 215123, China e-mail:

6. Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

A new model of high-intensity focused ultrasound generation by radiation from a composite nanothinfilm made of carbon nanotubes (CNTs) and elastomeric polymer is presented in this paper. The composite nanothinfilm is deposited to the surface of a concave lens and the performance of focused ultrasound generated by an incident pulsed laser onto the lens is analyzed. The analysis and results are verified by comparing with published experimental data and very good agreement is recorded. The opto-acoustic pressure on the symmetric axis and the lateral focal plane are investigated analytically and the result indicates that excellent acoustic performance is found to be present in the vicinity of the focus region. The temporal performance of the focused lens is also investigated both at the focal point and the prefocal zone and very good agreement comparing with experiment is obtained. Conclusively, it is demonstrated theoretically that there exists an optimal input frequency for a pulsed laser at which the performance of the focused lens can be tremendously enhanced. In general, this new analytical model provides new guidelines in the design of high-intensity ultrasound lens, hence opening up promising applications to medical ultrasonography treatment.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3