Burst Pressure Prediction of Cylindrical Vessels Using Artificial Neural Network

Author:

Zolfaghari Abolfazl1,Izadi Moein2

Affiliation:

1. Department of Integrated Systems Engineering, The Ohio State University, 1 William L Jones 210 Baker Systems Building, 1971 Neil Avenue, Columbus, OH 43210

2. Department of Geological and Environmental Sciences, Western Michigan University, Kalamazoo, MI 49008

Abstract

Abstract Pressure vessel plays an important role in wide range of applications to store gas or liquid substances. In order to design a pressure vessel safely, one of the main factors which has to be considered is selection of proper burst pressure perdition criterion. Due to large range of available materials in manufacturing of the vessels under different working conditions, several criteria to forecast burst pressure of the vessels have been developed and used by designers. Choosing the most proper criterion based on working condition and the material is a vital task to meet design requirements because inappropriate criterion may lead to unsafe vessel or over design. This issue makes not only pressure vessel design more complex but also maintenance planning, especially for designers who do not have enough experience, is a challenging task. Therefore, lack of a burst pressure predictor model, which is able to determine the pressure more accurately for wide range of materials and applications, has been remained unsolved. To evaluate machine learning techniques in prediction of burst pressure of pressure vessels, in this paper, a new model based on artificial neural network (ANN) has been proposed and developed. Input parameters of the model include internal and outer diameter, thickness, ultimate and yield strength; output is burst pressure. The obtained results showed that the constructed model has a good potential to be used as more applicable model compared to current models in design of pressure vessels.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference40 articles.

1. Yield and Bursting Characteristics of Heavy-Wall Cylinders;ASME J. Appl. Mech.,1956

2. Estimate of Bursting Pressure of Mild Steel Pressure Vessel and Presentation of Bursting Formula;Chin. J. Mech. Eng.,2006

3. Bursting Pressure of Cylindrical and Spherical Vessels;ASME J. Appl. Mech.,1958

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3