Modeling and Simulation of the Process for the Generation of Gradient Porous Structures From Immiscible Polymer Blends

Author:

Shen Hangming1,Yao Donggang2,Zhang Wei2,Ye Qian1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

Abstract There has been growing interest in integrating gradient porous structures into synthetic materials like polymers. One particular method for making gradient porous polymers is nonisothermal annealing of co-continuous phase structures of immiscible polymer blends under well-defined thermal boundary conditions. In this paper, we report a method to simulate this nonisothermal phase coarsening process for the generation of gradient-phase structures by the combined implementation of phase-field transport and momentum transport. Specifically, a phase-field equation is solved first to obtain a phase structure with phase size comparable with that of the blend to be annealed. This phase structure is then used as an initial geometry in a two-phase moving-interface flow simulation to gauge into the phase structure coarsening process. Several case studies were performed, and the results show that the controllable generation of gradient-phase structures can be enabled by well-designed geometry and thermal boundary conditions. Using 2D simulations, different types of gradient-phase structures experimentally observed were predicted. With increasing power in computation, the capability of 3D simulation may be unveiled for a more accurate prediction of the nonisothermal phase coarsening process and may ultimately evolve into a useful tool for the design and processing of gradient porous polymers.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3