Hydraulic Performance Comparison Between the Newly Designed Common Feeding and Standard Common Rail Injection Systems for Diesel Engines

Author:

Ferrari A.1,Paolicelli F.1,Pizzo P.1

Affiliation:

1. Department of Energy, Politecnico di Torino, Turin 10129, Italy

Abstract

A new-generation common feeding (CF) fuel injection system without rail has been compared with the standard common rail (CR) apparatus for diesel engine passenger cars. The high-pressure pump in the CF apparatus is connected directly to the injectors, and a volume of about 2.5 cm3 is integrated at the pump delivery. Experimental tests on solenoid injectors have been carried out for the CF and CR apparatus at a hydraulic test rig. The dependence of the injected volumes and total injector leakages on the energizing time (ET) of the two systems has been investigated for different rail pressure levels. Furthermore, the measured injected flow-rates of the CF and CR systems have been compared for single and pilot–main injection events. In general, the injection performance of the two systems is very similar, even though the differences occur in the high-pressure transients. The dynamics of the pressure waves changes because the high-pressure hydraulic layouts of the two systems are different, and the propagation and reflection of the rarefaction waves, triggered by the injection events, occur in different ways. A previously developed one-dimensional (1D) code for the CF high-pressure layout has been further validated by means of a comparison with the experimental data. The effects of either a calibrated orifice installed at the pump delivery or an injector-integrated Minirail on the CF performance have been investigated by means of the model. Numerical parametrical tests have also been conducted on the pump-to-injector pipe length. The additional orifices that can be installed in the high-pressure circuit of the CF are effective, provided their diameter is smaller than the diameter of any other orifice inserted in the injector. Furthermore, the presence of a Minirail within the injector has an impact on the injected flow-rates of small injections, such as pilot, pre, after, and post, and also induces a reduction in the energy stored in the pressure waves. Another relevant active damping strategy of the pressure waves for the CF involves shortening the pump-to-injector pipe as much as possible. Finally, the fluid dynamical transients within the solenoid injector have been discussed for the CF and CR systems. The numerical time distributions of the main variables within the injector are shown to be independent of the presence of the rail in the layout.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference25 articles.

1. Modeling Dynamic Behavior of Diesel Fuel Injection Systems,2004

2. Numerical Investigation of Critical Issues in Multiple-Injection Strategy Operated by a New CR Fast-Actuation Solenoid Injector,2005

3. Study of the Impact of System Characteristics on Pressure Oscillations in a Common Rail Diesel Fuel Injection System,2005

4. Feedforward Control Approach for Digital Combustion Rate Shaping Realizing Predefined Combustion Processes;SAE Int. J. Eng.,2015

5. Combustion Characteristics of a 3000 Bar Diesel Fuel System on a Single Cylinder Research Engine;SAE Int. J. Commer. Veh.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3