Development of an Innovative Multisensor Waveguide Probe With Improved Measurement Capabilities

Author:

Lenzi Giulio1,Fioravanti Andrea1,Ferrara Giovanni1,Ferrari Lorenzo2

Affiliation:

1. Department of Industrial Engineering, University of Florence, Via S. Marta, 3, Florence 50139, Italy e-mail:

2. CNR-ICCOM, National Research Council of Italy, Via Madonna del Piano, 10, Sesto Fiorentino (FI) 50139, Italy e-mail:

Abstract

Currently, waveguide probes are widely used in several turbomachinery applications ranging from the analysis of flow instabilities to the investigation of thermoacoustic phenomena. There are many advantages to using a waveguide probe. For example, the same sensor can be adopted for different measurement points, thus reducing the total number of sensors or a cheaper sensor with a lower operating temperature capability can be used instead of a more expensive one in case of high temperature applications. Typically, a waveguide probe is made up of a transmitting duct which connects the measurement point with a sensor housing and a damping duct which attenuates the pressure fluctuations reflected by the duct end. If properly designed (i.e., with a very long damping duct), the theoretical response of a waveguide has a monotone trend with an attenuation factor that increases with the frequency and the length of the transmitting duct. Unfortunately, the real geometry of the waveguide components and the type of connection between them have a strong influence on the behavior of the system. Even the smallest discontinuity in the duct connections can lead to a very complex frequency response and a reduced operating range. The geometry of the sensor housing itself is another element which contributes to increasing the differences between the expected and real frequency responses of a waveguide, since its impedance is generally unknown. Previous studies developed by the authors have demonstrated that the replacement of the damping duct with a properly designed termination could be a good solution to increase the waveguide operating range and center it on the frequencies of interest. In detail, the termination could be used to balance the detrimental effects of discontinuities and sensor presence. In this paper, an innovative waveguide system leading to a further increase of the operating range is proposed and tested. The system is based on the measurement of the pressure oscillations propagating in the transmitting duct by means of three sensors placed at different distances from the pressure tap. The pressures measured by the three sensors are then combined and processed to calculate the pressure at the transmitting duct inlet. The arrangement of the sensing elements and the geometry of the termination are designed to minimize the error of this estimation. The frequency response achieved with the proposed arrangement turns out to be very flat over a wide range of frequencies. Thanks to the minor errors in the estimation of pressure modulus and phase, the probe is also suitable for the signal reconstruction both in frequency and time domain.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference16 articles.

1. Study of Screeching Combustion in 6-Inch Simulated Afterburner,1955

2. Zinn, H., and Habermann, M., 2007, “Developments and Experiences With Pulsation Measurements for Heavy-Duty Gas Turbine,” ASME Paper No. GT2007-27475. 10.1115/GT2007-27475

3. Experimental Analysis of a Wave Guide Pressure Measuring System;ASME J. Eng. Gas Turbines Power,2010

4. Investigations of the Transonic Flow Around Oscillating Airfoils,1977

5. An Experimental Methodology for the Reconstruction of 3D Acoustic Pressure Fields in Ducts;ASME J. Eng. Gas Turbines Power,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Fast-Response Aerodynamic Pressure Probe Based on a Waveguide Approach;Journal of Engineering for Gas Turbines and Power;2016-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3