Computational Studies of Shape Memory Alloy Behavior in Biomedical Applications

Author:

Petrini Lorenza1,Migliavacca Francesco2,Massarotti Paolo3,Schievano Silvia,Dubini Gabriele4,Auricchio Ferdinando5

Affiliation:

1. Dipartimento di Meccanica Strutturale, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

2. Laboratory of Biological Structure Mechanics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

3. Dipartimento di Meccanica Strutturale, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy; and Laboratory of Biological Structure Mechanics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

4. Laboratory of Biological Structure Mechanics,Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

5. Dipartimento di Meccanica Strutturale, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy; Istituto di Matematica Applicata e Tecnologie Informatiche, CNR, Via Ferrata 1, 27100 Pavia, Italy

Abstract

Background: Nowadays, shape memory alloys (SMAs) and in particular Ni–Ti alloys are commonly used in bioengineering applications as they join important qualities as resistance to corrosion, biocompatibility, fatigue resistance, MR compatibility, kink resistance with two unique thermo-mechanical behaviors: the shape memory effect and the pseudoelastic effect. They allow Ni–Ti devices to undergo large mechanically induced deformations and then to recover the original shape by thermal loading or simply by mechanical unloading. Method of approach: A numerical model is developed to catch the most significant SMA macroscopic thermo-mechanical properties and is implemented into a commercial finite element code to simulate the behavior of biomedical devices. Results: The comparison between experimental and numerical response of an intravascular coronary stent allows to verify the model suitability to describe pseudo-elasticity. The numerical study of a spinal vertebrae spacer, where the effects of different geometries and material characteristic temperatures are investigated, allows to verify the model suitability to describe shape memory effect. Conclusion: the results presented show the importance of computational studies in designing and optimizing new biomedical devices.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference48 articles.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3