On the Role of the Plaque Porous Structure in Mussel Adhesion: Implications for Adhesion Control Using Bulk Patterning

Author:

Ghareeb Ahmed1,Elbanna Ahmed2

Affiliation:

1. Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 2119 Newmark Civil Engineering Lab, 205 N. Mathews Ave, Urbana, IL 61801 e-mail:

2. Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 2219 Newmark Civil Engineering Lab, 205 N. Mathews Ave, Urbana, IL 61801 e-mail:

Abstract

Mussel adhesion is a problem of great interest to scientists and engineers. Recent microscopic imaging suggests that the mussel material is porous with patterned void distributions. In this paper, we study the effect of the pore distribution on the interfacial-to-the overall response of an elastic porous plate, inspired from mussel plaque, glued to a rigid substrate by a cohesive interface. We show using a semi-analytical approach that the existence of pores in the vicinity of the crack reduces the driving force for crack growth and increases the effective ductility and fracture toughness of the system. We also demonstrate how the failure mode may switch between edge crack propagation and inner crack nucleation depending on the geometric characteristics of the bulk in the vicinity of the interface. Numerically, we investigate using the finite element method two different void patterns; uniform and graded. Each case is analyzed under displacement-controlled loading. We show that by changing the void size, gradation, or volume fraction, we may control the peak pulling force, maximum elongation at failure, as well as the total energy dissipated at complete separation. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Office of the Vice Chancellor for Research, University of Illinois at Urbana-Champaign

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3