Reactive Force Field (ReaxFF) and Universal Force Field Molecular Dynamic Simulation of Solid Electrolyte Interphase Components in Lithium-Ion Batteries

Author:

Nagar Anshul1,Garg Akhil2,Singh Surinder3,Gao Liang2,Kim Jonghoon1,Wei Kexiang4

Affiliation:

1. Chungnam National University Energy Storage and Conversion Laboratory, Department of Electrical Engineering, , Daejeon 34134 , South Korea

2. Huazhong University of Science and Technology State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, , Wuhan 437004 , China

3. Swinburne University of Technology Department of Mechanical Engineering and product design Engineering, Faculty of Science, Engineering and Technology, “Surface Engineering for Advanced Materials” - SEAM, , H38, P. O. Box 218, Hawthorn, VIC 3122 , Australia

4. Hunan Institute of Engineering Hunan Provincial Key Laboratory of Vehicle Power and Transmission System, , Xiangtan 411104 , China

Abstract

Abstract Understanding solid electrolyte interphase (SEI) is essential for the diagnosis of lithium-ion batteries because many aspects of battery performance such as safety and efficiency depend on these characteristics. LiF, Li2O, and Li2CO3 are important inorganic components of SEI. This electrode–electrolyte surface forms during the battery’s first charging/discharging cycle, preventing electrons’ movement through the electrolyte and stabilizing the lithium-ion battery. However, the concern is inorganic SEI components cause rate limitation of lithium-ion diffusivity through the SEI layer. Lithium-ion diffusivity through the SEI layer depends on many factors such as temperature, the width of the SEI layer, and the concentration/density of the layer. Lithium-ion diffusivity dependence on temperature, at working temperatures of lithium-ion batteries was observed at temperatures from 250 K to 400 K and diffusion coefficient data at higher temperatures have also been observed. Lithium-ion diffusivity at varying concentration/density was also observed in this paper using the reactive force field (ReaxFF) molecular dynamic simulation. To improve the lithium-ion diffusivity, vacancy defects were created in the inorganic components of the SEI layer LiF, Li2O, and Li2CO3 and the diffusion coefficient was obtained using the ReaxFF molecular dynamic simulations. Another approach to improve the lithium-ion diffusivity is doping alkali metal ions such Na, Ca, K, and Mg in the inorganic components of SEI layers of LiF, Li2O, and Li2CO3 and simulated using the universal force field (UFF), and the diffusion coefficient was observed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3