Optimizing Cutting Planes for Advanced Joining and Additive Manufacturing

Author:

Massoni Brandon1,Campbell Matthew I.2

Affiliation:

1. Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331

2. Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331 e-mail:

Abstract

While additive manufacturing allows more complex shapes than conventional manufacturing processes, there is a clear benefit in leveraging both new and old processes in the definition of metal parts. For example, one could create complex part shapes where the main “body” is defined by extrusion and machining, while small protruding features are defined by additive manufacturing. This paper looks at how optimization and geometric reasoning can be combined to identify cutting planes within complex three-dimensional (3D) shapes. These cutting planes are used to divide realistic mechanical parts into subparts that can be joined together through additive manufacturing or linear friction welding (LFW). The optimization method presents possible manufacturing alternatives to an engineering designer where optimality is defined as a minimization of cost. The paper presents and compares several cutting planes identification methods and describes how the optimization finds the optimal results for several example parts.

Funder

Boeing

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3