Mass Customization: Reuse of Digital Slicing for Additive Manufacturing

Author:

Kwok Tsz-Ho1,Ye Hang2,Chen Yong1,Zhou Chi2,Xu Wenyao3

Affiliation:

1. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA 90089 e-mail:

2. Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260 e-mail:

3. Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260 e-mail:

Abstract

Additive manufacturing, also known as three-dimensional (3D) printing, enables production of complex customized shapes without requiring specialized tooling and fixture, and mass customization can then be realized with larger adoption. The slicing procedure is one of the fundamental tasks for 3D printing, and the slicing resolution has to be very high for fine fabrication, especially in the recent developed continuous liquid interface production (CLIP) process. The slicing procedure is then becoming the bottleneck in the prefabrication process, which could take hours for one model. This becomes even more significant in mass customization, where hundreds or thousands of models have to be fabricated. We observe that the customized products are generally in a same homogeneous class of shape with small variation. Our study finds that the slicing information of one model can be reused for other models in the same homogeneous group under a properly defined parameterization. Experimental results show that the reuse of slicing information has a maximum of 50 times speedup, and its utilization is dropped from more than 90% to less than 50% in the prefabrication process.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference29 articles.

1. Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing,2009

2. Wohlers Report: Additive Manufacturing and 3D Printing State of the Industry,2013

3. Continuous Liquid Interface Production of 3D Objects;Science,2015

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3