A New Spatial and Temporal Harmonic Balance Method for Obtaining Periodic Steady-State Responses of a One-Dimensional Second-Order Continuous System

Author:

Wang X. F.1,Zhu W. D.23

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 e-mail:

2. Professor Fellow ASME Division of Dynamics and Control, School of Astronautics, Harbin Institute of Technology, P.O. Box 137, Harbin 150001, China;

3. Department of Mechanical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 e-mail:

Abstract

A new spatial and temporal harmonic balance (STHB) method is developed for obtaining periodic steady-state responses of a one-dimensional second-order continuous system. The spatial harmonic balance procedure with a series of sine and cosine basis functions can be efficiently conducted by the fast discrete sine and cosine transforms, respectively. The temporal harmonic balance procedure with basis functions of Fourier series can be efficiently conducted by the fast Fourier transform (FFT). In the STHB method, an associated set of ordinary differential equations (ODEs) of a governing partial differential equation (PDE), which is obtained by Galerkin method, does not need to be explicitly derived, and complicated calculation of a nonlinear term in the PDE can be avoided. The residual and the exact Jacobian matrix of an associated set of algebraic equations that are temporal harmonic balanced equations of the ODEs, which are used in Newton–Raphson method to iteratively search a final solution of the PDE, can be directly obtained by STHB procedures for the PDE even if the nonlinear term is included. The relationship of Jacobian matrix and Toeplitz form of the system matrix of the ODEs provides an efficient and convenient way to stability analysis for the STHB method; bifurcations can also be indicated. A complex boundary condition of a string with a spring at the boundary can be handled by the STHB method in combination with the spectral Tau method.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3