A Convex Approach Solving Simultaneous Mechanical Structure and Control System Design Problems With Multiple Closed-loop Performance Specifications

Author:

Fu Ke1,Mills James K.1

Affiliation:

1. Laboratory for Nonlinear Systems Control Department of Mechanical and Industrial Engineering University of Toronto 5 King’s College Road Toronto, Ontario M5S 3G8, Canada

Abstract

Abstract In this paper, a new integrated design method, referred to as the extended multiple simultaneous specification (EMSS) method, is proposed to solve simultaneous mechanical structure and control system design problems in which a set of n multiple closed-loop performance specifications must be simultaneously satisfied. To utilize this approach, all closed-loop performance specifications considered must have the property that they are convex with respect to the closed-loop system transfer matrix. With the proposed approach, a simply implemented two-stage design approach is used to determine a set of open-loop mechanical system design parameters and a closed-loop controller which simultaneously satisfies a set of n closed-loop performance specifications. In the first stage, for each closed-loop performance specification, one “sample system,” i.e., the closed-loop system with one set of mechanical design parameters with a closed-loop controller chosen from the set of all linear controllers, is determined by trial and error, such that the specification is satisfied. In the second stage, the transfer matrix of the final system, which satisfies all n performance specifications, is determined through the convex combination of the transfer matrices of n sample systems. A linear programming problem is solved to give the combination vector for this convex combination. With the closed-loop transfer matrix given, the mechanical design parameters, the closed-loop controller structure and its gains, are solved algebraically. In this paper, we establish conditions for the existence of a solution to this integrated design problem as well as prove that the EMSS approach retains the stability properties of the sample systems. Experimental results of the EMSS method, carried out on a linear positioning system are given, verifying the effectiveness of the proposed method. We note that the proposed EMSS method works well when the number of design parameters to be determined is small. Further, the proposed EMSS method also has some utility as a controller design method, to determine a closed-loop controller that satisfies a set of n multiple closed-loop performance specifications, given a fixed mechanical system structure.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference19 articles.

1. Task-specific Optimal Simultaneous Kinematic, Dynamic and Control Design of High-performance Robotic Systems;Rastegar;IEEE/ASME Trans. Mechatron.

2. A Simultaneous Optimization Algorithm for Determining Both Mechanical System and Controller Parameters for Positioning Control Mechanism;Arakawa

3. A Control Configured Flexible Arm: Integrated Structure/Control Design;Asada

4. Integrated Structure/Control Design Based on Model Validity and Robustness Margin;Savant

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3