Wettability Effects of Curved Superhydrophobic Surfaces on Drag Reduction in Taylor–Couette Flows of Water and Oil

Author:

Alsharief Ahmed F. Alarbi1ORCID,Duan Xili1,Yethiraj Anand2,Muzychka Yuri1

Affiliation:

1. Faculty of Engineering and Applied Science, Memorial University of Newfoundland , 240 Prince Philip Drive, St. John's, NL A1B 3X5, Canada

2. Department of Physics and Physical Oceanography, Memorial University of Newfoundland , 283 Prince Philip Drive, St. John's, NL A1B 3X7, Canada

Abstract

Abstract This study examines the effects of surface wettability on the drag-reducing performance of three hydrophobic coatings, namely, flouropel coating (FPC-800M), superhydrophobic binary coating (SHBC), and ultra-ever dry (UED)—when applied to curved aluminum surfaces. The wettability and flow characteristics were characterized using three liquids of different viscosities: de-ionized water and silicone oils of 5 and 10 cSt. Static and dynamic contact angles on the surfaces were measured, and the drag reduction was evaluated using a Taylor–Couette flow cell in a rheometer. The static contact angle (SCA) measurements indicated that the coated surfaces were superhydrophobic for water, with a maximum static contact angle of 158 deg, but oleophilic for the 10 cSt silicone oil, with a static contact angle of 13 deg. The rheometer measurements using water showed a maximum drag reduction of 18% for the UED-coated surfaces. Interestingly, the oleophilic surfaces (which have low SCA) showed a maximum drag reduction of 6% and 7% in the silicone oils. The observed drag reduction is due to an increase in the plastron thickness, which is caused by an increase in the Reynolds number and dynamic pressure coupled with a decrease in the static pressure normal to the superhydrophobic wall.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3