Automatic Generation of Design Space Conversion Maps and Its Application for the Design of Compound Split Hybrid Powertrains

Author:

Barhoumi Toumadher1,Kim Hyunjun1,Kum Dongsuk1

Affiliation:

1. Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea e-mail:

Abstract

Most of the prior design studies on compound split hybrids focused on the selection of optimal configurations through evaluating their performance within the physical design space, i.e., powertrain configurations. However, the authors revealed that using the compound lever for the performance analysis dramatically reduces the design space as redundant configurations exist for a single compound lever design, resulting in computational load reduction. Nevertheless, using the compound lever results in the loss of information required to realize the given configurations as these two configurations are represented by two different sets of variables. The powertrain configuration is defined by two physical design variables, i.e., gear ratios of the two planetary gears. However, the compound lever design is defined by two nonphysical design variables, α and β, which are the vertical bar lengths between the output node (vehicle) and the two motor/generators' (MG) nodes. Thus, if the compound lever is used as a design tool, the selected designs should be converted into powertrain configurations. This paper introduces an automatic methodology to generate feasible powertrain configurations for any given compound lever using generic conversion equations that express the relationship between the nonphysical design variables, α and β, and the physical design variables, gear ratios. Conversion maps relating the 252 powertrain configurations to the compound lever design space were generated, and the results confirmed that the compound lever removes the redundancy existing in the physical design space.

Funder

"Ministry of Land, Infrastructure and Transport"

National Research Foundation of Korea

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3