Affiliation:
1. DTU Wind Energy, Kgs. Lyngby, Denmark
2. DHI, Hørsholm, Denmark
Abstract
An experiment with a flexible pile subjected to steep and breaking irregular waves has been conducted. The pile was constructed to represent a monopile wind turbine at scale 1:80. Two point masses were mounted on the pile to achieve the right scaled values for the first and second natural frequency. Emphasis is given to the observed impulsive excitation of the natural modes by steep and breaking waves. Additionally, springing and ringing-type continuous forcing of the first natural mode is seen for the moderately steep waves.
The experiments were carried out at three depths and with two wave climates. The measured data for structural acceleration is analysed with respect to individual wave parameters. It is found that the largest accelerations occur for breaking waves.
The measured wave field and structural response are reproduced numerically with a fully nonlinear potential flow solver for the undisturbed wave kinematics, combined with a finite element model with Morison-based forcing. A good overall reproduction of the wave field and structural response is achieved for two selected episodes. For some of the waves, however, the numerical response magnitude does not match the observed excitations. Ongoing work is therefore an investigation of breaking wave load models and their implementation into the present numerical frame work.
Publisher
American Society of Mechanical Engineers
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献