Performance Modelling of an Offshore Floating Wind Turbine-Driven Deep Sea Water Extraction System for Combined Power and Thermal Energy Production: A Case Study in a Central Mediterranean Context

Author:

Sant Tonio1,Farrugia Robert N.1

Affiliation:

1. University of Malta, Msida, Malta

Abstract

Current research is exploring a new design concept for offshore wind turbines whereby the electrical generator in a conventional wind turbine is replaced by a large positive displacement pump that supplies pressurized sea water to a centralized hydro-electric plant. This paper investigates the potential of applying this concept to concurrently exploit thermocline thermal energy through deep sea water extraction in conjunction with offshore wind energy. A performance analysis is presented for a single wind turbine-driven pump supplying combined power and thermal energy by delivering pressurised deep sea water to a land-based plant consisting of a hydro-electric generator coupled to a heat exchanger. The steady-state power-wind speed characteristics are derived from a numerical thermo-fluid model. The latter integrates the hydraulic characteristics of the wind turbine-pump combination and a numerical code to simulate the heat gained/lost by deep sea water as it flows through a pipeline to shore. The model was applied to a hypothetical megawatt-scale wind turbine installed in a deep offshore site in the vicinity of the Central Mediterranean island of Malta. One year of wind speed and ambient measurements were used in conjunction with marine thermocline data to estimate the time series electricity and thermal energy yields. The total energy yield from the system was found to be significantly higher than that from a conventional offshore wind turbine generator that only produces electricity. It could also be shown that in regions where the offshore wind resource is not as rich, but where the ambient temperature is high as a result of a hotter climate, the cooling energy component that can be delivered is relatively high even at periods of low wind speeds.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3