Environment-Induced Cracking in Weld Joints in Subsea Oil and Gas Systems: Part II

Author:

Dodge M. F.1,Dong H. B.1,Milititsky M.2,Barnett R. P.2,Gittos M. F.2

Affiliation:

1. University of Leicester, Leicester, UK

2. TWI Ltd., Great Abington, Cambridge, UK

Abstract

In subsea oil and gas systems, low-alloy steel (LAS) forgings need to be welded to leaner steels such as X and F-65. While the LAS needs to be post-weld heat treated (PWHT) to relieve stresses and temper the HAZ microstructure in order to avoid hydrogen cracking, the same heat cycle would, in general, result in the degradation of the properties of the leaner alloy. A buttering technique is, therefore, usually used so that the buttered LAS forging can be heat treated before the closure weld is carried out. In the case of clad components, nickel alloy filler materials such as Alloy 625 are commonly used for both buttering and closure welds. This is an issue for subsea structures protected from corrosion by cathodic polarisation (CP) using aluminium based anodes. Whilst CP has proven successful as a means of preventing corrosion of steel components within subsea structures, failures along the dissimilar metal interfaces have been observed. This is due to hydrogen evolution as a result of CP. To further our understanding on this issue, this paper focuses on the correlation between microstructures, obtained by changing material combinations and PWHT conditions, and the resistance to hydrogen assisted cracking. Slow strain rate single edge notched bend (SENB) tests were carried out on the interfaces between AISI alloy 8630 and Alloy 625 buttering, retrieved from subsea service and tested in 3.5% NaCl solution under an applied potential of −1100mVsce. Retrieved specimens were pre-charged with hydrogen and tested at 4°C and 80°C, approximately in-line with commissioning/shutdown and service temperatures, respectively. In addition to the retrieved specimens, a testing programme has been developed to explore the effect of PWHT time on the performance of 8630-Alloy 625 and F22-Alloy 625 interfaces. The microstructures most susceptible to hydrogen cracking in these systems have been assessed by examination of the SENB test specimens.

Publisher

American Society of Mechanical Engineers

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3