Parameter Estimation by Parameter Signature Isolation in the Time-Scale Domain

Author:

Danai Kourosh1,McCusker James R.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003

Abstract

It is shown that output sensitivities of dynamic models can be better delineated in the time-scale domain. This enhanced delineation provides the capacity to isolate regions of the time-scale plane, coined as parameter signatures, wherein individual output sensitivities dominate the others. Due to this dominance, the prediction error can be attributed to the error of a single parameter at each parameter signature so as to enable estimation of each model parameter error separately. As a test of fidelity, the estimated parameter errors are evaluated in iterative parameter estimation in this paper. The proposed parameter signature isolation method (PARSIM) that uses the parameter error estimates for parameter estimation is shown to have an estimation precision comparable to that of the Gauss–Newton method. The transparency afforded by the parameter signatures, however, extends PARSIM’s features beyond rudimentary parameter estimation. One such potential feature is noise suppression by discounting the parameter error estimates obtained in the finer-scale (higher-frequency) regions of the time-scale plane. Another is the capacity to assess the observability of each output through the quality of parameter signatures it provides.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3