Numerical Investigation on the Aerodynamic Performance of a Low-Pressure Steam Turbine Exhaust Hood Using Design of Experiment Analysis

Author:

Diurno Tommaso1,Fondelli Tommaso1,Nettis Leonardo2,Maceli Nicola2,Arcangeli Lorenzo2,Andreini Antonio1,Facchini Bruno1

Affiliation:

1. Department of Industrial Engineering (DIEF), University of Florence, Florence 50125, Italy

2. Baker Hughes, Florence 50127, Italy

Abstract

Abstract Nowadays, the rising interest in using renewable energy for thermal power generation has led to radical changes in steam turbine design practice and operability. Modern steam turbines are required to operate with greater flexibility due to rapid load changes, fast start-up, and frequent shutdowns. This has given rise to great challenges to the exhaust hood system design, which has a great influence on the overall turbine performance converting the kinetic energy leaving the last stage of low-pressure turbine into static pressure. The radial hoods are characterized by a complex aerodynamic behavior since the flow turns by 90 deg in a very short distance and this generates a highly rotational flow structure within the diffuser and exhaust hood outer casing, moreover, the adverse pressure gradient can promote the flow separation drastically reducing the hood recovery performance. For these reasons, it is fundamental to design the exhaust system in order to ensure a good pressure recovery under all the machine operating conditions. This paper presents a design of experiment (DOE) analysis on a low-pressure steam turbine exhaust hood through computational fluid dynamics (CFD) simulations. A parametric model of an axial-radial exhaust hood was developed, and a sensitivity of exhaust hood performance as a function of key geometrical parameters was carried out, with the aim of optimizing the pressure recovery coefficient and minimizing the overall dimensions of the exhaust casing. Since hood performance strongly depends on a proper coupling with the turbine rear stage, such a stage was modeled using the so-called mixing-plane approach to couple both stator–rotor and rotor-diffuser interfaces. A detailed analysis of the flow field in the exhaust hood in the different configurations was performed, detecting the swirling structures responsible for the energy dissipation in each simulation, as well as correlating the flow field with the pressure recovery coefficient.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference28 articles.

1. A Literature Review of Low Pressure Steam Turbine Exhaust Hood and Diffuser Studies;ASME J. Eng. Gas Turbines Power,2013

2. Steam Turbine Exhaust Hood With Swirl Flow Separation Ducts,2012

3. Experimental Investigation of Geometrical Parameters on the Pressure Recovery of Low Pressure Steam Turbine Exhaust Hoods,2011

4. Parametric Experimental and Numerical Study of LP Diffuser and Exhaust Hood,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3