A Finite-Difference Method for Calculating Compressible Laminar and Turbulent Boundary Layers

Author:

Cebeci T.1,Smith A. M. O.2

Affiliation:

1. Aerodynamics Research Group, Douglas Aircraft Co., Long Beach, Calif.

2. Research, Douglas Aircraft Co., Long Beach, Calif.

Abstract

This paper presents a finite-difference method for solving laminar and turbulent-boundary-layer equations for incompressible and compressible flows about two-dimensional and axisymmetric bodies and contains a thorough evaluation of its accuracy and computation-time characteristics. The Reynolds shear-stress term is eliminated by an eddy-viscosity concept, and the time mean of the product of fluctuating velocity and temperature appearing in the energy equation is eliminated by an eddy-conductivity concept. The turbulent boundary layer is regarded as a composite layer consisting of inner and outer regions, for which separate expressions for eddy viscosity are used. The eddy-conductivity term is lumped into a “turbulent” Prandtl number that is currently assumed to be constant. The method has been programed on the IBM 360/65, and its accuracy has been investigated for a large number of flows by comparing the computed solutions with the solutions obtained by analytical methods, as well as with solutions obtained by other numerical methods. On the basis of these comparisons, it can be said that the present method is quite accurate and satisfactory for most laminar and turbulent flows. The computation time is also quite small. In general, a typical flow, either laminar or turbulent, consists of about twenty x-stations. The computation time per station is about one second for an incompressible laminar flow and about two to three seconds for an incompressible turbulent flow on the IBM 360/65. Solution of energy equation in either laminar or turbulent flows increases the computation time about one second per station.

Publisher

ASME International

Subject

General Medicine

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3