Heat Transfer in Coaxial Jet Mixing With Swirled Inner Jet

Author:

Dellenback P. A.1,Sanger J. L.1,Metzger D. E.2

Affiliation:

1. Department of Mechanical Engineering, University of Wyoming, Laramie, WY 82071-3295

2. Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287

Abstract

Convective heat transfer data are presented for coaxial jet mixing in a constant-diameter tube. The inner jet diameter was approximately twice the annular gap dimension. Water, with a nominal inlet Prandtl number of 6, was used as the working fluid. For the inner jet, Reynolds numbers of 30,000 and 100,000 were examined and the swirl number was varied from zero to one. Annular flow rates were characterized by a ratio of annular-to-inner jet axial momentum, which was varied from 0 to 8.3. In all cases the annular jet was unswirled. Plots of local Nusselt numbers show minima and maxima corresponding to the separation and reattachment associated with wall-bounded recirculation. As inner jet swirl strength increased from zero to its maximum value, the location of peak Nusselt number shifted upstream. Local Nusselt numbers achieved magnitudes as high as 9.7 times fully developed values for cases with high swirl and low annular flow rate. As the annular jet’s flow rate was increased, the heat transfer enhancement decreased while the near-wall recirculation zones were stretched and shifted downstream, until at sufficiently high values of the momentum flux ratio, the zones were no longer in evidence from the heat transfer data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Temperature analysis for the horizontal target cooling with non-confined and inclined air jet;Journal of Thermal Engineering;2023-04-14

2. Numerical investigation on swirl flow through burner with effect of rotation;5TH INTERNATIONAL CONFERENCE ON INNOVATIVE DESIGN, ANALYSIS & DEVELOPMENT PRACTICES IN AEROSPACE & AUTOMOTIVE ENGINEERING: I-DAD’22;2023

3. Cold Zone Exploration Using Position of Maximum Nusselt Number for Inclined Air Jet Cooling;Archive of Mechanical Engineering;2017-12-20

4. Experimental study of pre-swirl flow effect on the heat transfer process in the entry region of a convergent pipe;Experimental Thermal and Fluid Science;2011-01

5. Swirl measurements in a motor cylinder;Experiments in Fluids;1999-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3