Heat Transfer and Surface Renewal Dynamics in Gas-Fluidized Beds

Author:

Pence D. V.1,Beasley D. E.1,Figliola R. S.1

Affiliation:

1. Thermal-Fluid Sciences Research Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC 29634

Abstract

Local instantaneous heat transfer between a submerged horizontal cylinder and a gas-fluidized bed operating in the bubble-flow regime was measured and the resulting signals analyzed. Unique to this investigation is the division of particle convective heat transfer into transient and steady-state contact dynamics through analysis of instantaneous heat transfer signals. Transient particle convection results from stationary particles in contact with the heat transfer surface and yields a heat transfer rate that decays exponentially in time. Steady-state particle convection results from active particle mixing at the heat transfer surface and results in a relatively constant heat transfer rate during emulsion phase contact. The average time of contact for each phase is assessed in this study. Signals were acquired using a constant-temperature platinum film heat flux sensor. Instantaneous heat transfer signals were obtained for various particle sizes by varying the angular position of the heat transfer probe and the fluidization velocity. Individual occurrences of emulsion phase heat transfer that are steady-state in nature are characterized by contact times significantly higher than both the mean transient and mean emulsion phase contact times under the same operating conditions. Transient and steady-state contact times are found to vary with angular position, particle size, and fluidizing velocity. Due to the extremely short transient contact times observed under these fluidization conditions, mean transient heat transfer coefficients are approximately equal to the mean steady-state heat transfer coefficients.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3