Mass Transfer With Flow Through an Array of Rectangular Cylinders

Author:

Cho H. H.1,Jabbari M. Y.1,Goldstein R. J.1

Affiliation:

1. Heat Transfer Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

The mass transfer from an array of naphthalene-coated parallel rectangular cylinders, through which air passes in a slitlike flow, has been measured. The local Sherwood numbers indicate that the flow pattern is asymmetric in spite of using an array of two-dimensional, equally spaced identical cylinders. Smoke-wire flow visualization verifies this asymmetry, showing alternate short and long wakes around the cylinders, due probably to the instability of vortex shedding. On the side surfaces of the cylinders with the short wakes, the airflow deflects and reattaches, resulting in a high mass transfer. Also, a strong impinging effect is observed on the leeward (back) surface of these cylinders at high Reynolds numbers. Reattachment is not observed on the side surface for cylinders with the long wakes. On these, however, the mass transfer on the leeward surface is higher than on the short wake cylinders. This may be due to the relatively low naphthalene vapor concentration in the long wakes. The distribution of the short wakes (and the long wakes) is periodic and relatively stable. However, their position can be changed from one cylinder to the adjacent one by a disturbance. Measurements were taken over a moderate Reynolds number range of 300 to 3000 (based on the cylinder-to-cylinder pitch and approaching velocity). The laminar, transition, and turbulent nature in the wake flows can be inferred from the results.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat Transfer Enhancement of Bent Offset Strip Fin in Fuel Cell Cooling;Proceeding of International Heat Transfer Conference 17;2023

2. Augmented heat transfer with intersecting rib in rectangular channels having different aspect ratios;International Journal of Heat and Mass Transfer;2015-09

3. Characteristics of the heat transfer from a horizontal rotating cylinder surface;Experimental Thermal and Fluid Science;2015-09

4. Trailing edge cooling of a gas turbine blade with perforated blockages with inclined holes;International Journal of Heat and Mass Transfer;2014-06

5. Convective mass transfer from a horizontal rotating cylinder in a slot air jet flow;International Journal of Heat and Mass Transfer;2011-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3