Integration of Design for Additive Manufacturing Constraints With Multimaterial Topology Optimization of Lattice Structures for Optimized Thermal and Mechanical Properties

Author:

Venugopal Vysakh1,McConaha Matthew1,Anand Sam1

Affiliation:

1. Center for Global Design and Manufacturing, Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221

Abstract

Abstract The design of multimaterial lattice structures with optimized elasticity tensor, coefficient of thermal expansion (CTE), and thermal conductivity is the main objective of the research presented in this article. In addition, the additive manufacturability of the lattice structure is addressed using a prismatic density filter to eliminate support structures, and an octant symmetry filter is used to design symmetric lattices. A density-based topology optimization model is formulated with a homogenization method and solved using a sequential linear programming method to obtain the desired unit cell geometry of the lattice structure. The optimized unit cell obtained has high mechanical stiffness, a low CTE, and low thermal conductivity. A finite element analysis is carried out on the optimized lattice structure and an equivalent cube of computed effective properties (with the same loading and boundary conditions) to validate the computed homogenized material properties. The results from the finite element analysis show that the methodology followed to generate the lattice structure is accurate. Such lattice structures with tailored material properties can be used in aerospace parts that are subjected to mechanical and thermal loads. The complex multimaterial geometry produced from the topology optimization routine presented here is intended explicitly for the manufacture of parts using the directed energy deposition process with multiple material deposition nozzles.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3