Integrated Vehicle Dynamics Control Via Torque Vectoring Differential and Electronic Stability Control to Improve Vehicle Handling and Stability Performance

Author:

Jaafari Seyed Mohammad Mehdi1,Shirazi Kourosh Heidari2

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz 6135743337, Iran e-mail:

2. Professor Mechanical Engineering Department, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz 6135743337, Iran e-mail:

Abstract

This paper proposed a full vehicle state estimation and developed an integrated chassis control by coordinating electronic stability control (ESC) and torque vectoring differential (TVD) systems to improve vehicle handling and stability in all conditions without any interference. For this purpose, an integrated TVD/ESC chassis system has been modeled in Matlab/Simulink and applied into the vehicle dynamics model of the 2003 Ford Expedition in carsim software. TVD is used to improve handling in routine and steady-state driving conditions and ESC is mainly used as the stability controller for emergency maneuvers or when the TVD cannot improve vehicle handling. By the β−β˙ phase plane, vehicle stable region is determined. Inside the reference region, the handling performance and outside the region the vehicle stability has been in question. In order to control the integrated chassis system, a unified controller with three control layers based on fuzzy control strategy, β−β˙ phase plane, longitudinal slip, and road friction coefficient of each tire is designed in Matlab/Simulink. To detect the control parameters, a state estimator is developed based on unscented Kalman filter (UKF). Bees algorithm (BA) is employed to optimize the fuzzy controller. The performance and robustness of the integrated chassis system and designed controller were conformed through routine and extensive simulations. The simulation results via a co-simulation of MATLAB/Simulink and CarSim indicated that the designed integrated ESC/TVD chassis control system could effectively improve handling and stability in all conditions without any interference between subsystems.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3