Generalized Polynomial Chaos With Optimized Quadrature Applied to a Turbulent Boundary Layer Forced Plate

Author:

Wixom Andrew S.1,Walters Gage S.2,Martinelli Sheri L.2,Williams David M.3

Affiliation:

1. Applied Research Laboratory, Pennsylvania State University, State College, PA 16804 e-mail:

2. Applied Research Laboratory, Pennsylvania State University, State College, PA 16804

3. Department of Mechanical Engineering, Pennsylvania State University, State College, PA 16804

Abstract

We explore the use of generalized polynomial chaos (GPC) expansion with stochastic collocation (SC) for modeling the uncertainty in the noise radiated by a plate subject to turbulent boundary layer (TBL) forcing. The SC form of polynomial chaos permits re-use of existing computational models, while drastically reducing the number of evaluations of the deterministic code compared to Monte Carlo (MC) sampling, for instance. Further efficiency is attained through the application of new, efficient, quadrature rules to compute the GPC expansion coefficients. We demonstrate that our approach accurately reconstructs the statistics of the radiated sound power by propagating the input uncertainty through the computational physics model. The use of optimized quadrature rules permits these results to be obtained using far fewer quadrature nodes than with traditional methods, such as tensor product quadrature and Smolyak sparse grid methods. As each quadrature node corresponds to an expensive deterministic model evaluation, the computational cost of the analysis is seen to be greatly reduced.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3