Numerical Study on the Local Aggregation of Helium Bubbles in Liquid Lithium and Its Thermal Analysis

Author:

Liu Yongfu1,He Yi1,Tan Peng1

Affiliation:

1. University of Science and Technology of China (USTC) Department of Thermal Science and Energy Engineering, , Hefei 230026, Anhui , China

Abstract

Abstract Liquid lithium is widely regarded as an optimal cooling medium for space nuclear reactors due to its exceptional heat transfer properties and low density. However, the helium bubbles generated by liquid lithium under space irradiation pose significant hazards to the safe and stable operation of nuclear reactions. This study employs the COMSOL finite element software to construct the level-set two-phase flow models and bubble stream model separately to investigate the local accumulation of helium bubbles and the overall flow of low-concentration gas–liquid mixtures. The main focus is on examining the different distributions of multiple helium bubbles randomly generated in local liquid lithium and the influence of boundary conditions on their accumulation morphology, as well as the impact of low-concentration bubble stream on their overall heat transfer performance. Agglomerated bubbles with radii between 5 μm and 150 μm are classified into three categories based on local concentrations: circular (≤20.37%), irregular elongated (up to 30.44%), and banded (up to 36.31%).The interconnected banded bubbles can be up to 8 times larger than irregularly elongated ones, and they have a positive effect on the distribution of physical quantities and wall temperature perturbations in the pipeline. The increase in inlet velocity triggers bubble impacts and fragmentation, further reducing thermal resistance and enhancing heat transfer performance. When the bubble diameter is less than 15 μm and the bubble concentration is within 1%, the influence of the mixed flow on overall heat transfer is not significant. This study provides insights for manipulating bubble structure and guiding localized and comprehensive thermal analyses.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3