On the Existence of Circle-Point and Center-Point Circles for Three-Precision-Point-Dyad Synthesis

Author:

Loerch R. J.1,Erdman A. G.1,Sandor G. N.2

Affiliation:

1. University of Minnesota, Minneapolis, Minn.

2. Mechanical Engineering Design Laboratory, University of Fla.

Abstract

A graphical method is developed for expressing solutions to all possible revolute dyad, three finitely separated position synthesis problems, where any two rotational displacements are prescribed. Also, cases are discussed where two positions and one velocity are prescribed. The three-precision-point solutions are shown to be represented by circular loci of fixed and moving dyad pivots that are derived from an analytical treatment based on bilinear transformation of the synthesis equations. The superposition of two three-position dyad problems with two common positions yields points on the four-precision-point Burmester curves satisfying both problems. A new alternative explanation for the classical Burmester curve construction is offered. Regions of the plane are found where dyad moving pivots cannot exist for a given problem. Computer graphics output is used to demonstrate several typical solutions.

Publisher

ASME International

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3