Effect of CANDU Bundle-Geometry Variation on Dryout Power

Author:

Leung Laurence K. H.1

Affiliation:

1. Atomic Energy of Canada Limited, Chalk River, ON, K0J 1J0, Canada

Abstract

Dryout powers have been evaluated at selected inlet-flow conditions for two proposed designs of Canada deuterium uranium, CANDU® (a registered trademark of Atomic Energy of Canada Limited (AECL)) bundles and compared with those of the 37-element and CANDU Flexible, CANFLEX® (a registered trademark of AECL and Korea Atomic Energy Research Institutes (KAERI)) bundles. These proposed designs consist of a large center element (18 mm for one design and 20 mm for the other) and three rings of elements of 11.5 mm in outer diameter. The critical heat flux for each bundle design has been predicted using the correlation derived with Freon data obtained from the corresponding full-scale bundle test. An improvement in dryout power has been shown for the proposed design having a 20 mm center element with a radial power profile corresponding to the natural-uranium fuel as compared with other bundles, particularly the natural-uranium 37-element bundle, with a symmetric-cosine axial power profile. The dryout power improvement is further enhanced for the upstream-skewed axial power profile.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference11 articles.

1. Dryout Power of a CANFLEX Bundle String With Raised Bearing Pads;Leung

2. The Program to Develop and Demonstrate the CANFLEX Bundle, Its Additional Capabilities and Supporting Technologies;Lane

3. Design and Qualification of the Bruce CANFLEX—Low Void Reactivity Fuel (LVRF)—An Overview;Lau

4. Thermalhydraulics Performance Optimization of CANDU Fuel Using ASSERT Subchannel Code;Rao

5. Fluid-to-Fluid Modelling of Critical Heat Flux in 37-Element Bundles;Leung

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3