Passive Control of the Inlet Acoustic Boundary of a Swirled Burner at High Amplitude Combustion Instabilities

Author:

Tran Nicolas1,Ducruix Sebastien1,Schuller Thierry1

Affiliation:

1. Laboratoire EM2C, CNRS-Ecole Centrale Paris, Châtenay-Malabry 92295, France

Abstract

Perforated panels placed upstream of the premixing tube of a turbulent swirled burner are investigated as a passive control solution for combustion instabilities. Perforated panels backed by a cavity are widely used as acoustic liners, mostly in the hot gas region of combustion chambers to reduce pure tone noises. This paper focuses on the use of this technology in the fresh reactants zone to control the inlet acoustic reflection coefficient of the burner and to stabilize the combustion. This method is shown to be particularly efficient because high acoustic fluxes issued from the combustion region are concentrated on a small surface area inside the premixer. Theoretical results are used to design two types of perforated plates featuring similar acoustic damping properties when submitted to low amplitude pressure fluctuations (linear regime). Their behaviors nonetheless largely differ when facing large pressure fluctuation levels (nonlinear regime) typical of those encountered during self-sustained combustion oscillations. Conjectures are given to explain these differences. These two plates are then used to clamp thermoacoustic oscillations. Significant damping is only observed for the plate featuring a robust response to increasing sound levels. While developed on a laboratory scale swirled combustor, this method is more general and may be adapted to more practical configurations.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3