Finite Element Thermal Analysis of Bone Cement for Joint Replacements

Author:

Li Chaodi1,Kotha Shiva1,Huang Chen-Hsi1,Mason James1,Yakimicki Don2,Hawkins Michael2

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556

2. Department of Polymer Research, Zimmer, Inc., Warsaw, IN 46580

Abstract

A finite element technique was developed to investigate the thermal behavior of bone cement in joint replacement procedures. Thermal tests were designed and performed to provide the parameters in a kinetic model of bone cement exothermic polymerization. The kinetic model was then coupled with an energy balance equation using a finite element formulation to predict the temperature history and polymerization development in the bone-cement-prosthesis system. Based on the temperature history, the possibility of the thermal bone necrosis was then evaluated. As a demonstration, the effect of cement mantle thickness on the thermal behavior of the system was investigated. The temperature profiles in the bone-cement-prosthesis system have shown that the thicker the cement, the higher the peak temperature in the bone. In the 7 mm thick cement case, a peak temperature of over 55°C was predicted. These high temperatures occurred in a small region near the bone/cement interface. No damage was predicted in the 3 mm and 5 mm cement mantle thickness cases. Although thermal damage was predicted in the bone for the 7 mm mantle thickness case, the amount of thermal necrosis predicted was minimal. If more cement is used in the surgical procedure, more heat will be generated and the potential for thermal bone damage may rise. The systems should be carefully selected to reduce thermal tissue damage when more cement is used. The methodology developed in this paper provides a numerical tool for the quantitative simulation of the thermal behavior of bone-cement-prosthesis designs.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3