Development of a Geothermal-Based Integrated Plant for Generating Clean Hydrogen and Other Useful Commodities

Author:

Yuksel Yunus Emre1,Ozturk Murat2,Dincer Ibrahim3

Affiliation:

1. Math and Science Education, Education Faculty, Afyon Kocatepe University, ANS Campus, Afyonkarahisar 03200, Turkey

2. Department of Mechatronics Engineering, Faculty of Technology, Isparta University of Applied Sciences, Cunur West Campus, Isparta 32200, Turkey

3. Faculty of Engineering and Applied Science, University of Ontario Instıtute of Technology, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada

Abstract

Abstract In this study, geothermal energy is considered as a renewable energy source to finally provide various useful outputs such as electricity, hydrogen, fresh and hot water, drying, heating, and cooling. In this regard, a new geothermal power-based multigenerational system is proposed to meet these demands in an environmentally benign manner and studied thermodynamically by considering energy and exergy approaches and investigating parametrically. A combination of geothermal energy is used to achieve the most promising hydrogen generation rates and high plant performances. The results of this study indicate that the energy and exergy efficiency values of the entire plant for the selected operating conditions become 38.41% and 42.57%. In addition to the thermodynamic analysis performed, numerous parametric studies are performed to reveal how operating conditions and state parameters affect the overall system performance. According to the parametric analyses results, for given ranges, an increase in ambient temperature, separator working temperature, geothermal fluid temperature, and geothermal fluid mass flowrate have positive impact on both energy and exergy efficiency of the integrated system and useful products generation rate as well.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3