Investigation of Blade Tip Interaction With Casing Treatment in a Transonic Compressor—Part I: Particle Image Velocimetry

Author:

Voges M.1,Schnell R.1,Willert C.1,Mönig R.1,Müller M. W.2,Zscherp C.3

Affiliation:

1. German Aerospace Center (DLR), Linder Höhe, 51147 Köln, Germany

2. Technische Universität Darmstadt, Petersenstrasse 30, 64287 Darmstadt, Germany

3. MTU Aero Engines, Dachauer Strasse 665, 80995 München, Germany

Abstract

A single-stage transonic axial compressor was equipped with a casing treatment (CT), consisting of 3.5 axial slots per rotor pitch in order to investigate the predicted extension of the stall margin characteristics both numerically and experimentally. Contrary to most other studies, the CT was designed especially accounting for an optimized optical access in the immediate vicinity of the CT, rather than giving maximum benefit in terms of stall margin extension. Part I of this two-part contribution describes the experimental investigation of the blade tip interaction with casing treatment using particle image velocimetry (PIV). The nearly rectangular geometry of the CT cavities allowed a portion of it to be made of quartz glass with curvatures matching the casing. Thus, the flow phenomena could be observed with essentially no disturbance caused by the optical access. Two periscope light sheet probes were specifically designed for this application to allow for precise alignment of the laser light sheet at three different radial positions in the rotor passage (87.5%, 95%, and 99%). For the outermost radial position, the light sheet probe was placed behind the rotor and aligned to pass the light sheet through the blade tip clearance. It was demonstrated that the PIV technique is capable of providing velocity information of high quality even in the tip clearance region of the rotor blades. The chosen type of smoke-based seeding with very small particles (about 0.5 μm in diameter) supported data evaluation with high spatial resolution, resulting in a final grid size of 0.5×0.5 mm2. The PIV database established in this project forms the basis for further detailed evaluations of the flow phenomena present in the transonic compressor stage with CT and allows validation of accompanying computational fluid dynamics (CFD) calculations using the TRACE code. Based on the combined results of PIV measurements and CFD calculations of the same compressor and CT geometry, a better understanding of the complex flow characteristics can be achieved, as detailed in Part II of this paper.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry;Westerweel;Exp. Fluids

2. Second-Order Accurate Particle Image Velocimetry;Wereley;Exp. Fluids

3. 3D Configuration of Shock Wave in Transonic Centrifugal Impeller Using 2D-PIV;Hojo

4. Application of DPIV to Study Both Steady State and Transient Turbomachinery Flows;Wernet;Opt. Laser Technol.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3