A Weakly Nonlinear Approach Based on a Distributed Flame Describing Function to Study the Combustion Dynamics of a Full-Scale Lean-Premixed Swirled Burner

Author:

Laera Davide1,Camporeale Sergio M.2

Affiliation:

1. DMMM, Sez. Macchine ed Energetica, Politecnico di Bari, Via Re David 200, Bari 70125, Italy e-mail:

2. DMMM, Sez. Macchine ed Energetica, Politecnico di Bari, Via Re David 200, Bari 70125, Italy

Abstract

Modern combustion chambers of gas turbines for power generation and aero-engines suffer of thermo-acoustic combustion instabilities generated by the coupling of heat release rate fluctuations with pressure oscillations. The present article reports a numerical analysis of limit cycles arising in a longitudinal combustor. This corresponds to experiments carried out on the longitudinal rig for instability analysis (LRIA) test facility equipped with a full-scale lean-premixed burner. Heat release rate fluctuations are modeled considering a distributed flame describing function (DFDF), since the flame under analysis is not compact with respect to the wavelengths of the unstable modes recorded experimentally. For each point of the flame, a saturation model is assumed for the gain and the phase of the DFDF with increasing amplitude of velocity fluctuations. A weakly nonlinear stability analysis is performed by combining the DFDF with a Helmholtz solver to determine the limit cycle condition. The numerical approach is used to study two configurations of the rig characterized by different lengths of the combustion chamber. In each configuration, a good match has been found between numerical predictions and experiments in terms of frequency and wave shape of the unstable mode. Time-resolved pressure fluctuations in the system plenum and chamber are reconstructed and compared with measurements. A suitable estimate of the limit cycle oscillation is found.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3