A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending

Author:

Findley W. N.1

Affiliation:

1. Brown University, Providence, R. I.

Abstract

The concept that alternating shear stress is the primary cause of fatigue with the normal stress on the critical shear plane as an influencing factor has been developed for the case of mean (or static) stresses superimposed on combinations of torsion and axial load or bending. The influence of the maximum stress of the cycle of stress on the allowable alternating stress for a given number of cycles and on the orientation of the critical shear plane is explored. The predictions of the theory are consistent with the known trends of fatigue data both for ductile metals and cast irons. The theory explains the fact that the influence of mean stress is weak for torsion and stronger for bending of ductile metals, but strong for both torsion and bending of cast irons. As far as is known this is the first rational theory for the influence of mean stress.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3