Evaluation of Thermal Performance of Conically Shaped Micro Helical Tubes Using Non-Newtonian Nanofluids–A Numerical Study

Author:

Zainith Prabhakar1,Mishra Niraj Kumar1

Affiliation:

1. National Institute of Technology Uttarakhand Department of Mechanical Engineering, , Srinagar (Garhwal) 246174 , India

Abstract

Abstract Nowadays, the cooling and heating of micro-thermal devices have received a growing interest. To improve the thermal management of these micro-thermal devices, various efforts are being made by the researchers. In the present study, conically shaped micro helical tubes are used to investigate the coil side heat transfer rate and friction factor of non-Newtonian nanofluids under laminar flow conditions. For the numerical analysis, single-phase approach with commercial software ansys-fluent-19 has been utilized. Investigations encompass generalized Reynold numbers ranging from 306 to 2159 and four different curvature ratios (0.066, 0.076, 0.088, and 0.1) of conically shaped micro helical tubes. The inner diameter of the helical tube is 2 mm and contains 20 turns. Al2O3-based non-Newtonian nanofluids with volume concentrations of 0.0%, 0.1%, and 0.2% having base fluid of aqueous solution of carboxymethyl-cellulose (CMC) are used as the working fluid (hot) for the coil side, while in the shell side cold water is used. The results from numerical investigation are validated and found in good agreement with earlier experimental results. The results show that with the increase in the curvature ratio of conically coiled tubes both heat transfer rate and friction factor increase by 46% and 98% respectively, for base fluid at a curvature ratio of 0.1. Also, the present study reveals that adding nanoparticles to the base fluid enhances the heat transfer rate to a maximum value of 40%. Moreover, the maximum value of thermal performance factor (TPF) is found to be 1.52.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3