Affiliation:
1. Civil Engineering Department, University of Virginia, Charlottesville, VA 22904-4742
Abstract
The response of metal matrix composites is affected by factors such as inclusion distribution and shape, inclusion/matrix interfacial bond, residual stresses, and fabrication-altered in situ matrix properties. These effects are studied using a finite-volume micromechanics model whose extensive modeling capabilities are sufficient to account for these diverse factors. A consistent micromechanics-aided methodology is developed for extracting the unknown in situ matrix plastic parameters using a minimum amount of experimental data. Subsequent correlation of the micromechanics-based predictions with carefully generated data on off-axis response of unidirectional boron/aluminum composite specimens under tensile and compressive axial loading validates the model’s predictive capability and quantifies the importance of each factor.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献