Development of Three-Dimensional Turbulent Boundary Layer in an Axially Rotating Pipe

Author:

Kikuyama K.1,Murakami M.1,Nishibori K.1

Affiliation:

1. Department of Mechanical Engineering, Nagoya University, Furocho, Chikusaku, Nagoya, Japan

Abstract

The time-mean velocities and turbulent fluctuations inside the turbulent boundary layers which developed in an axially rotating pipe were measured in the case where an undeveloped flow with a rectangular axial velocity distribution was introduced in the pipe. The pipe rotation gives two counter effects on the flow: one is a destabilizing effect due to a large shear caused by the rotating pipe wall and the other is a stabilizing effect due to the centrifugal force of the swirling velocity component of the flow. The destabilizing effect prevails in the inlet region, but the stabilizing effect becomes dominant in the downstream sections. The intensity of turbulence in the rotating pipe decreases ultimately below that in a stationary state of the pipe. Using the experimental results, the relationship between the mixing length and Richardson number proposed by Bradshaw was examined for the turbulent boundary layer that develops in the rotating pipe.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3