An Analysis of Crack Propagation Paths at Implant/ Bone-Cement Interfaces

Author:

McCormack B. A. O.1,Prendergast P. J.2

Affiliation:

1. Bioengineering Research Centre, Department of Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland

2. Department of Mechanical Engineering, Trinity College, Dublin 2, Ireland

Abstract

Clinical follow-up studies of joint replacements indicate that debonding of the implant from the bone-cement is the first mechanical event of loosening. Debonding can occur due to unsustainable interface stresses, usually initiated from defects along the interface. Such defects, or flaws, are inevitably introduced during the surgical procedure and from polymerisation shrinkage. Debonding leads to increased stresses within the cement mantle. This study is concerned with modelling the propagation of a crack from the debonded region on the cement/implant interface under physiological loading conditions for different implant materials and prosthesis designs. Using the theory of linear fracture mechanics for bimaterial interfaces, the behaviour of a crack along an interface between implant materials, under various states of stress, is studied. Specifically, a model is developed to determine the conditions under which a debonded region, along an otherwise bonded interface, will either propagate along the interface or will “kink” into the cement mantle. The relationship between the stress state and the crack propagation direction at the interface is then predicted for different interface materials, and it is shown that different crack directions exist for different materials, even when the stress state is the same. Furthermore, the crack behavior is shown to be dependent on the ratio of normal stress to shear stress at the interface and this may be important for the design optimisation of load-bearing cemented prostheses. Finally, the likelihood that an interface crack will propagate into the cement mantle is explored using a suitable fracture criterion.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3