Air Film Thickness Estimation in Web Handling Processes

Author:

Hashimoto Hiromu1

Affiliation:

1. School of Engineering, Department of Mechanical Engineering, Tokai University, Kanagawa, Japan 259-12

Abstract

In this paper, in order to estimate an air film thickness between moving web and guide roller (web spacing height), an air film thickness formula was derived based on the finite width compressible foil bearing theory. In the derivation of the air film thickness formula, the two-dimensional Reynolds equation and foil equilibrium equation were discretized by the finite difference method and solved iteratively to obtain the pressure and air film thickness distributions for various parameters. Based on the numerical results, the simplified convenience formula for the estimation of air film thickness between web and guide roller was obtained. On the other hand, the air film thickness between web and guide roller was measured by an optical sensor, and the experimental results were compared with the calculated results. Moreover, the variation of air film thickness between two layers in web winding processes was analyzed by making use of the air film thickness formula derived above. From the theoretical and experimental results obtained, the effects of air film thickness on the web transporting systems were clarified.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Residual Volume of Entrained Air in Wound Roll;Innovative Technologies for Printing and Packaging;2023

2. Tension modeling and precise tension control of roll-to-roll system for flexible electronics;Flexible and Printed Electronics;2021-02-09

3. Contact Mechanics of a Thin, Tensioned, Translating Tape With a Grooved Roller;Journal of Tribology;2017-08-16

4. Effect of tension on conductivity of gravure printed Ag layer in roll-to-roll process;International Journal of Precision Engineering and Manufacturing;2015-01

5. Effect of static electricity on static friction force between plastic film and steel roller;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2014-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3