Numerical Analysis of Static Characteristics at Start of Operation in Porous Journal Bearings With Sealed Ends

Author:

Kaneko Satoru1,Takabatake Hiroyuki1,Ito Kanya2

Affiliation:

1. Department of Mechanical Engineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, 940-2188, Japan

2. Twinbird Corporation, 2084-2, Nishiota, Yoshida-machi, Nishikanbara, Niigata, 959-0221, Japan

Abstract

Static characteristics at the start of the operation are theoretically investigated in a porous journal bearing with sealed ends lubricated only by the oil initially provided within its pores. This is a preliminary study for estimating the variation of these characteristics with running time. A simple analytical model of the mixed lubrication regime is proposed on the basis of the assumption that the external forces acting on the journal, i.e., the applied static load, the oil-film force and the force at the boundary friction part, are balanced. Numerical results show that air penetrates into the porous matrix at the oil-film rupture zone due to negative pressure in the porous matrix; this causes the reduction of oil content within the porous matrix and contributes to formation of the oil film in the bearing clearance. The oil leakage from the porous matrix induced by the air penetration suggests that, even if hydrodynamic lubrication conditions are possible at the start of operation, the lubrication mode will become mixed or boundary lubrication conditions with running time. The numerical data on the static characteristics are presented in graphical form, illustrating the effects of the Sommerfeld number in the hydrodynamic and mixed lubrication regimes.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3