Estimation of the Time Delay Associated With Damping Controlled Fluidelastic Instability in a Normal Triangular Tube Array

Author:

Mahon John1,Meskell Craig2

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical Engineering, Trinity College, Dublin 2, Ireland

Abstract

Fluidelastic instability (FEI) produces large amplitude self-excited vibrations close to the natural frequency of the structure. For fluidelastic instability caused by the damping controlled mechanism, there is a time delay between tube motion and the resulting fluid forces but magnitude and physical cause of this is unclear. This study measures the time delay between tube motion and the resulting fluid forces in a normal triangular tube array with a pitch ratio of 1.32 subject to air cross-flow. The instrumented cylinder was forced to oscillate in the lift direction at three excitation frequencies for a range of flow velocities. Unsteady surface pressures were monitored with a sample frequency of 2 kHz at the mid plane of the instrumented cylinder. The instantaneous fluid forces were obtained by integrating the surface pressure data. A time delay between the tube motion and resulting fluid forces was obtained. The nondimensionalized time delay was of the same order of magnitude assumed in the semi-empirical quasi-steady model (i.e., τ2 = 0.29 d/U). Although, further work is required to provide a parameterized model of the time delay which can be embedded in a model of damping controlled fluidelastic forces, the data already provides some insight into the physical mechanism responsible.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3